Final Technical Report (A 004) and Test and Demonstration Report (A 002)

Investigation of Neurophysiological Procedures for the Detection of Explosives

Contract DAAG53-76-C-0020

Sidney Weinstein, Ph. D.
NeuroCommunication Laboratories, Inc.
West Kenosia Ave.
Danbury, Conn. 06810

September 20, 1976

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Table of Contents

	racie of Contents		
		Pa	ge_
Summary		1	
Introduction		1	
Status of Each Rat		1	
	S000	3	
	S004	4	
	S005	7 6-8	1
	S006	6-8	
	S014	9-1	
	S014 S016	9-1	
	S017	12-1	•
	S019	12-1	
	S020	15-1	
	S021	15-1	
	S022	18-1	
	S023	18-2	
	S029	21-2	
	S030	21-2	
	S033	24-2	
	5034	24-2	
	S 0 3 5	27-2	
	S036	27-2	
	S037	30-3	
	S039	30-3	
	S040	33-3	
	S041	33-3	•
Discussion		36	
Conclusions		37	(Constant
Recommendations		37	(a) (a)
Appendix			
Surgical Procedure		38	Accession For
Shaping Procedure		40	NTIS GRA&I
Recording Procedure	re	40	DTIC TAB
Conditioning Proces		41	Unannounced
Analusis of Effect	adie	44	Justification
Table 1 - Schedule	of Groups	46	
Table 2 - Schedule	-	4 7	By
Ss not Completed	or Groups	48	
26 Band EEG Frequ	lency	49	Availability Codes Avail and/or
Summary Information		50	Dist Special
Summary of ANOVA		51	Dist Special
Glossary of Abbrev		51	
Percentage Time in			
Post E and NE		52	
Table 3 - Continuan		53	ALLEN BEN
			TO THE PARTY OF TH

Summary

The purpose of this study was to determine whether rats, exposed to the odors emanating from TNT, demonstrate differential cortical frequency spectra (CFS) if these odors are reinforced by electrical brain stimulation (EBS) in the medial forebrain bundle (MFB).

Forty three male albino rats, were surgically prepared by stereotaxically implanting a bipolar, stainless steel, stimulating electrode into the MFB, and attaching two cortical surface electrodes for recording CFS.

Each rat comprised an individual experiment, in which various procedures of stimulus delivery (e.g., manually changing tubes of TNT and control odorants, versus automatically switching compressed air through the tubes), training (using operant conditioning in some as an index of conditioning versus classical conditioning), and analyses of the results were employed to answer the basic question of whether rats can discriminate TNT.

Except for several rats who died (from ingesting toxic matter), or lost their electrical skull caps, almost every rat showed: (a) behavioral, (b) neurophysiological, or (c) both behavioral and neurophysiological indices of the ability to respond differentially to the odorants emanating from TNT in contrast to control odorants (e.g., asphalt, pine sawdust, room air). The behavioral indices comprised pressing a bar to receive an EBS when TNT was present and to refrain from such behavior in the presence of the control odorants. The neurophysiological indices were changes in the CFS obtained during TNT stimulation in comparison with CFS obtained prior to training or during control odorant stimulation.)

The conclusion can be clearly stated: Rats can demonstrate the presence of TNT by modification of their brain response or, behaviorally, by pressing a bar.

Introduction

Since the purpose of this study was to determine whether rats can detect the odors emanating from TNT, our major efforts were to devise various procedures which would test this hypothesis. Therefore, each rat comprised an individual experiment, in which variants of the following were employed: 1. stimulus delivery systems 2. operant conditioning as an index of conditioning before brain-recordings were taken 3. classical conditioning procedures, and 4. analytic procedures involving various filtering systems, and statistical analyses.

The major aspect of this report, therefore, will deal with a description of how each rat was trained, the variants of his training procedures and the relative level of training effected, since, in essence, the question of whether rats can detect TNT has been answered affirmatively.

Further sections in (Appen dices contain all the technical data: Surgical Procedures, Shaping Procedures, Conditioning Procedures, Analysis of Effect, Subjects not Completed, 26 Band EEG Frequency, and Summary Information.

The section immediately following contains a description of each rat's 'Status,' (i.e., level and type of conditioning), EBS data, Intensity-Rate Curve, Odorants Employed, and Conditioning (including data on operant responses where applicable). There is also a page giving, for each rat, per cent time in each CFS band pre- and postodorants, six correlations between these CFS, and nine T tests comparing the level of the correlations. The differences between various correlations are one index of training by detecting nonlinear changes in the spectral distribution of the CFS under TNT and any of the following:pre-TNT, pre-Non-TNT, or Post Non-TNT. The Wilcoxon and Friedman Tests were employed as indices of greater or lesser degrees of cortical activity across the entire spectral distribution.

In each rat, correlations between the CFSs obtained under exposure to TNT odorants and under exposure to non TNT odorants both before and after conditioning were statistically compared. A statistically significant (p<.05) decrease in the correlation between the CFSs obtained during post conditioning exposure to TNT and another condition was taken as sufficient evidence of conditioning. The data which follow include the CFSs (percent time in band) for each conditioned rat for: pre conditioning exposure to TNT odorants, (Pre-E), post conditioning exposure to TNT odorants, (Post-E), preconditioning exposure to NTNT odorants (Pre-NE), and post conditioning exposure to Non TNT odorants (Post-NE).

Pearson Product Moment Correlation: r₁=PreNE-PreE; r₂=PreNE-PreE; r₃=PreNE-PostE; r₄=PreNE-PostNE; r₅=PreE-PostE; r₆=PostNE-PostE.

t-test#	Between rs	Control rs
1	1,5	3
2	1,3	5
3	2,6	3
4	2,3	6
5	4, 5	6
6	4, 6	5
7	2,5	-
8	4, 3	-
9	1,6	•

Status. This rat was conditioned to bar-press to the odor of TNT (p< .01). He died before brain recordings were taken.

EBS Rate and Parameters. The current parameters were: 300 µA for 250 msec. He pressed 35/min.

Intensity-Rate Curve. This was not computed.

Odorants Employed. Preconditioning odorants were: TNT, pine dust, and asphalt: postconditioning odorants were the same ones.

Conditioning. Odorants changed manually for each trial. Varied VI schedule of reinforcement during training session, one minute trials. (see Tables). Later (4/21/76) on revised automatic system w/solenoid air valves, probability generator, etc., clicks signalling TNT, light for ITI, 50 second trial, 10 sec. ITI, session time-60 min. Passed stage 1 (learned clicks), died shortly thereafter.

Total No. of Sessions: ?

Pine Sawdust vs. TNT

1/28/76 1 min. trials Varied VI

		<u>Ex</u>	NEX		
1	R	30	22	52	
1	NR	0	16	16	
		30	38	68	

$$x^2 = 14.3$$
 p < . 001

1/30/76
First 25 min. of 50 min. trial

		Ex_	NEx		
ļ	R	12	7	19	
	NR	0	6	6	
		12	13	25	

$$X^2 = 5.0$$

p < .1 (1 tail)

2/3/76

	Ex	NEx		
RE	2	2	4	
NoRE	15	17	32	
	17	19	36	

Pseudo-control
Non Significant:
(No TNT in tube by error)

Status. 1. Behaviorally conditioned p<.0001. 2. Brain conditioned (Friedman Test) p<.053.

EBS Rate and Parameters. 195/min. 175 u A x 200 msec.

Intensity - Rate Curve.

50 μ A	60/min/
75 µA	116.3/min.
100 µ A	154/min.
125 µ A	159. 2/min.
150 µ A	179.5/min.
175 µ A	195/min. → optimal
200 µ A	194.5/min.

Odcrants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt, Pine, Air

Conditioning. 1. 50 second trials, 10 second ITI, TNT vs. Asphalt (3/5/76)

2. 20 second trials, 10 second ITI, clicks to signal TNT, ITI light, Hiss with bar press during NE (4/14/76); Passed clicks phase, 50% RF schedule.

3. Continuance trials: Press-trial extended; 3 second delay at beginning of trial to onset of stimulus, then 4.3 second chance to respond. Response extend trial to 12 seconds, No Response end of trial, into ITI. 1/2 hr. sessions, 2x a day. Conditioned (6/7/76) on this system after 34 previous sessions, including previous systems, RF schedule: 100%.

Note: Ran after 7 weeks dormancy on different system, different odor, different air-vacuum system; very significant (see below)

Total No. of Sessions: 34

6/21/76

continuance trials

	<u> </u>	<u>NR</u>	•	_
E	53	6	59	Ī
NE	0	33	33	Ţ
	53	39	92	

$$x^2 = 69.9$$
 p< . 0001

6/24/76

continuance trials

	R	NR	
E	56	1	57
NE	0	29	29
	56	30	86

$$X^2 = 81.7$$
 p< . 0001

8/17/76

after 7 weeks dormancy on 20 sec. trials (constant) no continuance trials no punishment very few mistakes, no objective data taken 8/18/76

same as above: NE-air; classical logic circuit

	Re	NoF	le
Ex	32	0	32
NEx	6	22	28
	38	22	60

$$x^2 = 39.7$$
 p< . 0001

8/19/76

NE=pine

New air-vacuum system

		NE	Еж	
ľ	Re	8	27	35
ľ	NR	19	0	19
-				

$$x^2 = 29.3$$
 $p < .0001$

SUBJECT NO. 04

PERCENT TIME IN PAND

BAND	PRE-NE	PRE-F	P051-MF	Pust-F
1	n ື	0	n	4
2	r	h	1	1
2 3	3	n	3	1
4	1	Ü	<u>.3</u>	4
5	4	4	タ	4
6	5	G	3	<i>></i>
7	16	13	7	10
A	13	20	11	11
9		4	•	7
10	9 7	4	5	ς,
11	5 ,	4	2	4
12	5	5	7	4
13	5 5 3.1	2.1	2.6	E _n
14	2	1.9	3.2	4.2
15	2.1	(1	1.9	4.4
16	1.1	3.1	1.6	1.8
17	1.2	1.5	2.1	1.2
ja	1.1	2.7	1.6	1.3
jo	1	3.2	1.4	1
Žη	12	1.2	1.3	} • ¤
21	1.9	1.6	2.3	3.1
22	1.8	1.9	2.6	1.9
23	1.2	1.7	2.1	1.8
24	1.6	• H	2,1	2.2
25	1.1	2.7	1.9	1.0
26	1.6	1.7	1,9	2.4

	(1)15(1)
PRE-NE VC PRE-F	1 .798383
COPP= .813895	P63276
PPF-NF VS POST-NF	3 1.23499
CORP= .841117	4 .501902
PPF-MF VS FOST-F	5 .936274
CORP= .855152	F .131741
PPF-F VS PUST-NF	7 1.27859
CORR= .826964	e327465
PRE-E VS POST-F	u -,403644F-01
COPR= .763145	
POST-NE VS FOST-F	
CORR= .817874	

S 005

Status. Brain conditioned p < . 001 on Behavioral Conditioning. (Correlation)		
EBS Rate and Parameters. 40/min. 475µ A x 250 msec.		
Intensity -Rate Curve. 400 ^{\(\mu\)} A 32/min.		
450µ A35/min/		
optimal \longrightarrow 475 μ A 39.8/min.		
500µ A stopped pressing		
Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt		
Conditioning. 1. 4/14/76; clicks on TNT, yellow light flash on press during NE, 50 second trial, 10 second ITI, 60 min. session once a day. Dropped ITI light and punishment, passed clicks after 8 sessions. 2. 4/30/76; started fading clicks over sessions, tried 20 second delay to onset of clicks. 3. 5/28/76; on continuance trials; 3 second reinforcement delay after odor; 20 second chance to press; Press=60 sec. trial, No Press = end trial. Final system used; looked good when pressing, but took long breaks. Session shortened to 30 minutes. Never passed behaviorally, Recorded EEGs - Brain Conditioned.		
Total No. of Sessions: 38		
<u>s</u> <u>006</u>		
Status. Brain conditioned p<.001 (correlation) Instrumental and Classical. Behaviorally conditioned p<.1 (Chi-square)		
EBS Rate and Parameters. 25/min. 600μ A x 500 msec.		
Intensity-Pata Curve 575/LA 13/min		
Intensity-Rate Curve. $575\mu A$ 13/min. optimal $\rightarrow 690\mu A$ 25/min.		
625μ A18, 6/min.		
Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt, Air		
Conditioning. 1. $4/14/76$; Ex-clicks, NE-yellow light flash w/press,ITI = yellow light, 20 sec. trial, 10 sec. ITI, 30 min. session. Learned clicks, started fading clicks 21 sessions. 2. $5/28/76$; Continuance trials; 3 second R _f delay, 20 second chance to respond; Response 60 sec. trial, learned at p<.1 level. 3. Insignificant Brain Waves, switched to classical conditioning. $7/23/76$. Intensity lowered to 425μ A because of convulsions, 20 second trials, 10 second ITI, 30 min. sessions = 60 trials/day, 100% R _f schedule; Brain Conditioned after 5 sessions classical.		

Total No. of Sessions.

BAND	. PRF-NE	PRF-F	POST-NE	POST-F
1	3	>	5	0
S	• • •	3	2	n
3	4	4	'n	Ġ
4	Ż	5	7	ũ
5	5	4 .	6	0
6	5	3	1	Ŏ
7	11	13	5	ì
A	9	15	R	i
9	9	4	11	ñ
10	4	7	ġ ·	د
11	4	3	6	ń
12	4	4	4	•
13	4.7	5.3	3.3	ź.ĸ
1.4	4.4	2,6	วั	3
1 45	3.4	2.1	5	3.2
16	2.1	2.1	1.7	5
17	2.1	• 6	1.4	ž. a
18	1.1	1.1	1.7	4
19	1.2	1.7	3.2	3.2
Su	1.5	1.4	1.3	1.9
21	1.7	2	1.6	1.3
22	2.0	۱.۵	2,1	1.5
23	1,3	1.4	2.3	1.6
24	2.3	2.2	3	2.2
25	3.2	1.4	1.9	. 6
26	7.*	2.3	2.7	3

STATICTION DATA

	このかり	т
PPF-NF VS PDF-F	1	4.26492
CORR= .81A671	5	4 47848
btt-vir Ac blict-it	4	2 411052
CORR= .A31R%A	4	2.72644
PRE-ME VS LOCT-P	Ę	1.83101
COPP= .22020AF=01	6	2.17183
PRF-F VS POST-F	7	2.1553R
COPPE	} \	2.01305
PRE-E VS HOST-F	Q	7.74497
COPR= .108451		•
POST-AF VS POST-S		
CORR= .423039F=01		

Copy available to DTIC does not permit fully legible reproduction.

BAND	PAK-WE	PKF-F	Prist-II	1-T209
•	42	31	36	26
2	7	24	24	7
3	14	24	4	ħ
	22	13	16	16
5	Ĭ,	6	K	11
6	3	a	3	15
7	Į P	17	1 P	25
Á	20	įt,	14	1 c
9	11	14	7	7
10	7	Ä	K	
11	÷	4	5	1
לנ	9	10	4	5
13	6.6	7.9	5.3	4.6
14	11.3	10.1	6	4,5
15	5,0	6.4	7.4	۳.5
16	2,0	3.4	2,4	5.0
17	2.P	3.2	4.6	5
) /) A	7	3	ພັກ	4.7
10	, ,	h.3	4	5 0
	4.7	40 6 45	۲,۱	6.0
5.v	ς, '	4.	7	6.7
21	6	h	9.9	1.2
22	6.7	12.4	10.A	9.4
23 24	A. A	4.6	14.3	11.5
24	P.3	1.9	8 3	H.1
25 26	4.0	7.9	4.H	3.9

	COMB	•
PUF-NE VS FHE-F	1	2.51AR1
CORR= .740904	2	125441
PRE-NE VS POST-NE	7	1.31959
CORR= .P31517	4	. 532446
PHE-ME VS MOST-F	٤,	2.7547
Copp= .7921	6	.P4 37
PRE-E VS POST-FE	7	1.84469
CODD= .413545	F	2114225
PPF-F VS POST-F	Q	*******
CORP= .571038		
POST-ME VS POST-M		
COPUS .735536		

S 014

Status.	Brain conditioned,	p< .005	(correlation).	classical
		•		

EBS Rate and Parameters. 46/min. 225# A x 250 msec.

Intensity-Rate Curve.

150μ A ______18/min. 175μ A ______26.4/min. 200μ A _____33.8/min. 225μ A ______45.7/min.

250µ A _____motor movement, stops pressing

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. 1. 7/2/76 - started on Classical Conditioning 20 second trials, 10 second ITI, 30 minute sessions, = 60 trials/day. Recorded after 5 and 10 sessions. Brain conditioned after 10 sessions.

Total No. of Sessions. 10

S 016

Status. Brain conditioned, p < .01 (correlation)

EBS Rate and Parameters. 26/min. 400 # A x 250 msec.

Odorants Employed. Pre: TNT, Asphalt, Pine, Air - Post: TNT, Pine

Conditioning. Standard Classical. 20 sec. trials, 10 sec. ITI, 30 min. session once a day = 60 trials/day.

Behavioral note. began to spend most time sniffing at air during each progressive session.

Brain conditioned after 4 sessions.

R_f schedule - 100%, 50% during session prior to post recording * Lost original cap, reoperated on to replace.

Intensity-Rate Curve.

used for conditioning ___ 350μ A ____ 19/min. 375μ A ____ 20. 4/min.

optimum _____ 400\mu A _____ 26/min.

 $425\mu A ____18/min.$

Total No. of Sersions 4

PENCENT THE THE HAND

BAND	PRF -NE	P-4.F-F	DOCT-HE	P051-F
1	42	76	16	31
7	J o	50	24	17
3	22	29	20	17
	8)	16	20	7
5	13	11	11	8
6	10	6	4	3
7	<u>J</u> o	¥	25	ĭz
R	21	1.3	20	iï
9	1 A	رآج	4	jĀ
) n	14	j.c	3	į,
11	A	11	3	6
12	11	11	7	11
13	4.1	4.1	5,7	11.2
14	5.4	6.4	4.2	7.1
15	5.5	3.7	5, 3	4.2
16	2.1	1.7	વૄં બ	1
17	?	1.6	2 A	p.p
] A	11.1	1.4	2.1	.4
19	1.4	2.6	3.4	()
20	2.2	2.4	۶ ۹	6.5
21	2.1	≥. 3	7.6	6.3
55	2.5	2.1	A.1	6.6
23	1.9	2.2	A.A	7.6
24	1.5	3.1	7.3	H.F
25	3.2	2.8	7.5	7.5
74	1.0	1.6	7.7	5.1

	CUP.Ü	T
PRE-NE VC LIRE-F	1	1.67774
C(1PH= .9073A)	,	1.27434
PDE-VIE AC DOCT-IIF	3	471518
CORP= .611147	4	-2 3400
Pre-vie Ac huct-t.	¢,	-2.0271A
SPRP= .846543	.	747649
PRE-E VS FOST-NE	7	-1,49755
CODH= .402723	SA	-1 A5294
PRE-E VS POST-E	٩	2.94124
CORP± .81855A		
POST-NE VS FOST-F		•
CUPP= .SAR403		

PERCENT TIME TH PAND

BAND	DDF = FE	par =r	POSTANT	POST-9
1	26	21	42	42
2 3	1 r	17	10	3
3	17	24	in) i
4	11	16	20	27
5	11	11.	Ω	13
6	Ą	4	1 n	ĸ
7	19	17	10	14
8	1 A	18	22	15
9	12	11	1.4	15
1 r	7	4	<u>,</u>	7
11	ς;	45	>	4
12	4	>	G	<i>h</i>
13	3.9	7.2	7.7	15.8
14	6	6	6.4	8.9
15	A _=	¥	7.4	7.4
16	2.4	Ç	ว ๋ั๋๋	3.9
17	4.1	≥.3	4.6	2.5
18	4.7	** • 1	, ù	3
10	, € • Q	5.1	1.6	ž.4
50	9.4	3.6	7.6	6.5
21	5. K	9.3	7, 3	7
22	10.5	11.4	A.7	. A.1
23	11.1	9.8	10.2	7
74	11.6	9.1	A, î	6.4
25	A.c	7.7	7.4	4.8
26	5.4	4 • H	5.6	3

	(uvi)	Ŧ
PPF-MF VS FISE	,	2.5504
CORR= .820567	,	1.02324
PPF-NIE VS EOST-NIE	3	-1.72553
Cubb= "aleurl	i,	1.71307
Hot -ile Ad MUCT-c	Š,	749904
CORP= .726712	4	-3.50977
PPF-F VC POST-NC	1	1.55744
CORP= .617635	, A	680104
PRF-F VS PEGT-F	Q	-1.22787
Cupp= .543514		— (• F & 300 F
POST-NE VS POST-F		
CUBH= .90HAD2		

S 017

Status. Brain conditioned. p < .01 (correlation)

EBS Rate and Parameters. 97/min. 200 \(\mu \text{A} \times 250 \text{ msec.} \)

Intensity-Rate Curve.

	100 µ A	57.7/min.
	125 µ A	84.2/min.
used for conditioning	→ 150 µ A	88. 2
•	175 µ A	91,5/min.
optimum	200 H A	97/min.
•	225 µ A	90/min.

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Standard Classical

20 second trials, 10 sec. ITI, 30 min/session,

l session/day = 60 trials/day - Recorded after 6, 11, and 14 sessions - Brain conditioned after 14 sessions. - Reinforcement schedule: 100%, 50% during session preceding post recordings.

Total No. of Sessions. 14

S 019

Status. Brain conditioned (p < .01 - Friedman - p < .005 - Correlation)

EBS Rate and Parameters. 108/min. 275 μ A x 250 msec.

Intensity-Rate Curve.

200 µ A	82/min.
225 µ A	100/min.
250 µ A	104/min.
275 µ A	108/min.
300 H A	100/min.

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Standard Classical

20 second trials, 10 second ITI, 30 min. session, 1 session day = 60 trials/day. Post recordings after sessions 3, 5, and 10.

Brain conditioned after 10 sessions.

Total No. of Sessions. 10

1 21 26 10 42 2 30 21 3 14 3 20 20 20 23 4 24 20 7 9 5 13 H 17 11 6 2 5 2 2 7 11 22 14 19 8 26 17 23 19 9 10 6 16 16 16 10 5 7 9 11 15 11 3 5 2 2 2 11 3 5 2 2 2 11 3 5 2 2 2 12 10 10 13 4 10 10 10 10 10 10 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 2 2 8 7 <td< th=""><th>BAND</th><th>PRS-NF</th><th>PHE-F</th><th>POST-NF</th><th>PUST-F</th></td<>	BAND	PRS-NF	PHE-F	POST-NF	PUST-F
2 30 21 3 14 3 20 20 20 23 4 24 20 7 9 5 13 8 12 11 6 2 5 2 2 7 11 22 14 19 8 26 17 23 19 9 10 6 14 15 10 5 7 9 19 11 3 5 2 2 12 10 10 13 4 13 5 2 2 2 12 10 10 13 4 13 5 9 5 3 5 14 9 5 4 2 7 1 10 7 13 5 9 5 3 5 9 5 3 5 3 9 6 6 9 3 9 6 9 8			26	1 ^	42
3 20 20 20 20 23 23 24 20 7 9 11 25 11 12 11 11 12 11 12 11 12 12 14 19 19 10 19 19 10 19 19 10 10 11 19 19 10 10 11 15 10 11 11 11 11 11 11 10 11	2		21	7	14
4 24 20 7 9 5 13 8 17 11 6 2 5 2 2 7 11 22 14 19 8 26 17 23 19 9 10 17 23 19 10 5 7 9 15 11 3 5 7 9 11 3 5 7 9 12 10 10 13 4 13 5 9 5 3 5 14 9 5 3 5 9 5 14 9 5 3 5 9 5 3 6 9 3 6 9 3 6 9 3 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 9 6 9 9 6 9	3			29	23
5 13 H 12 11 6 2 5 2 2 7 11 22 14 19 8 26 17 23 19 9 10 6 10 15 10 5 7 9 11 3 5 2 2 12 10 10 13 4 13 5 9 5 3 5 9 14 9 5 3 5 9 5 3 10 7 10 7 10 7 10 7 10 7 7 10 7 9 6 9 9 8 7 9 6 9 9 6 9 9 6 9 9 6 9 9 6 9 8 7 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <	4		20	7	4
6 2 5 2 7 19 10 15 15 11 11 4 11 4 11 10 11 11 4 4 11 10 11 11 4 4 11 10 11 11 11 4 11 10 11				2 ا	
7 11 22 14 19 8 26 17 23 19 9 10 6 16 16 15 10 5 3 7 9 9 11 3 5 2 2 2 12 10 10 13 4 4 13 5 9 5 3 5 9 5 3 14 9 5 4 2 7 1 10 7 1 10 7 10 7 10 7 7 10 7 7 10 7 10 7 2 8 7 2 2 8 7 2 2 8 7 2 2 8 7 2 11 9 6 9 8 7 2 11 9 6 9 8 7 2 11 9 6 9 8 7 9 6 9 8 7 9 <td< td=""><td>6</td><td></td><td></td><td>2</td><td></td></td<>	6			2	
8 26 17 23 19 9 10 6 14 15 10 5 7 9 11 3 5 2 2 12 10 10 13 4 13 5.9 5.3 5.9 5.3 14 9.5 4.2 7.1 10.7 15 5.3 6.9 5.8 6.9 16 4.9 3.9 5.8 6.9 17 4.1 4.5 1.8 .4 18 2.6 6 3 5.5 19 4 4.4 2.8 7.8 20 8.7 5.8 4.4 5.1 21 7 6 5.3 9.6 22 8.7 9.3 6 9.8 7.9 24 9.3 6 9.8 7.9 25 7.3 9.6 8.7 9.6		1 11	55		
9 10 6 16 16 15 10 5 7 9 11 3 5 7 9 12 10 10 17 4 13 5.9 5.3 5.9 5.7 14 9.5 4.2 7.1 10.7 15 5.3 6.9 5.8 6.9 16 4.0 4.9 3.0 2.4 17 4.1 4.5 11.8 .4 18 2.6 6 3 5.5 19 4 4.4 2.8 2.8 2.8 20 8.7 5.8 4.4 5.1 21 7 6 5.3 9.6 22 8.7 9.8 4.4 5.1 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7	8	?6			
11 3 5 2 2 12 10 10 17 4 13 5.0 5.3 5.0 5.7 14 9.5 4.2 7.1 10.7 15 5.3 6.9 5.8 6.9 16 4.0 4.9 3.0 2.4 17 4.1 4.5 1.8 .4 18 2.6 6 3 5.5 19 4 4.4 2.8 2.8 20 8.7 5.8 4.4 5.1 21 7 6 5.3 9.6 22 8.7 4 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.0 25 7.3 5.6 8.7 9.6	9	'1e			
12 10 17 4 13 5.9 5.3 5.9 5.7 14 9.5 4.2 7.1 10.7 15 5.3 6.9 5.8 6.9 16 4.0 4.9 3.0 2.4 17 4.1 4.5 1.8 .4 18 2.6 6 3 5.5 19 4 4.4 2.8 2.8 20 8.7 5.6 4.4 5.1 21 7 6 5.3 9.6 22 8.7 9.6 7.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6	10				
13 5.9 5.3 5.7 14 9.5 4.2 7.1 10.7 15 5.3 6.9 5.8 6.9 16 4.9 3.0 2.4 17 4.1 4.5 1.8 .4 18 2.6 6 3 5.5 19 4 4.4 2.8 2.8 20 8.7 5.6 3 9.6 21 7 6 5.3 9.6 22 8.7 9.6 7.2 9.6 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6	11				
14 9.5 4.2 7.1 10.7 15 5.3 6.9 5.8 6.9 16 4.9 3.0 2.4 17 4.1 4.5 1.8 .4 18 2.6 5.5 5.5 19 4 4.4 2.8 2.8 20 8.7 5.6 4.4 5.1 21 7 6 5.3 9.6 22 8.7 4 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6	12			· ·	
15 5.3 6.9 5.8 6.9 16 4.9 3.0 2.4 17 4.1 4.5 1.8 .4 18 2.6 6 3 5.5 19 4 4.4 2.8 2.8 2.8 20 8.7 5.8 4.4 5.1 21 7 6 5.3 9.6 22 8.7 4 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6	13	5.9			
16 4.9 3.0 2.4 17 4.1 4.5 1.8 .4 18 2.6 6 3 5.5 19 4 4.4 2.8 2.8 2.8 20 8.7 5.8 4.4 5.1 5.1 21 7 6 5.3 9.6 22 8.7 4 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6	• •			7.1	
17 4.1 4.5 1.8 .4 18 2.6 6 3 5.5 19 4 4.4 2.8 2.8 20 8.7 5.8 4.4 5.1 21 7 6 5.3 9.6 22 8.7 4 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6					
18 2.6 6 3 5.5 19 4 4.4 2.8 2.8 20 8.7 5.8 4.4 5.1 21 7 6 5.3 9.6 22 8.7 4 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6	16				
19 4 4.4 2.8 7.8 20 8.7 5.8 4.4 5.1 21 7 6 5.3 9.6 22 8.7 9 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6		4 • 1			
20 8.7 5.8 4.4 5.1 21 7 6 5.3 9.6 22 8.7 9 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6					
21 7 6 5.3 9.6 22 8.7 4 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6				P.8	
22 R.7 4 7.8 7.2 23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6					
23 10 7 10.2 11.4 24 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6		· · · · · · · · · · · · · · · · · · ·			
74 9.3 6 9.8 7.9 25 7.3 5.6 8.7 9.6					
25 7.7 5.6 8.7 9.6			-		11.4
26 7.4 h.2 1.1				H • /	
	26	7.4	6.4	4. <i>f</i>	L

	CUMD	Т
PRE-NE VS EPE-E	1	.32247A
COPUE ROOTT3	2	2.69285
PRE-HE VS FOST-NE	3	977174
CORP= .431836	4	-1.15249
PRE-NE VS POST-E	ц.	HAPHE. S-
CORP= .592363	6	73635
PRE-E VS POST-IE	7	-1.99263
COPD= .497984		456707
PRE-F VS PIST-F	r)	1.56514
CHPP= .79164		
POST-NE VS FORT-F		
CORP= .580302		

5 5	PRE-NE	PPE-F	POST-NE	POST-F
BVND	FRE-WE	0	n	0
1		Ë	7	()
5	14	13	11	9
.3 .4	11		9	0
	11	13	A	3
5	4	9	2	<u>î</u> n
6	1.3	6	7	16
7	10	4	11	5
A	4	^	0 '	£
9	4	4	>	3
10	3	3		ŭ
11	1 .	2	6	4
12	n	7	6	۶ . ء
j3	2	2.4	2.6	4.8
14	1.2	2.4	4.?	6.P
15	1	1.6	2.6	1.6
16	_ e;	1	• 5	2.2
17	1.4	• ñ	• 4	
16	-4	.7	• 4	2 .7
] 9	6	• H	• •	• ^ • ^
50	• 4	.7	1.1	2.3
	1	• 7	1.3	1.5
21	_ 3	• 7	1.2	2.4
55	1 1	. µ	1,3	1.6
23	7	. 4	1.4	1.1
24	• 1	.3	2.5	1.7
26	• •	.4	1	1.7
26	• ~	~ ~		

•	
1 3 4 5 6 7 8 0	2.38362 2.59954 .850999 .774961 2.74168 3.03719 .528427 2.28695 2.06974
	4 5 6 7 8

Status. Brain conditioned p < .001 (correlation) Behavioral Behaviorally conditioned p < .001 (Chi-square)

EBS Rate and Parameters. 130/min. 300 \(\mu \) A x 250 msec.

Intensity-Rate Curve.

120 # A	13/min.
150 µ A	23/min.
200µ A	93.5/min.
225µ A	106/min.
250u A	113/min.
275 µ A	118/min.
300u A	131/min.
325 µ A	134/min. — optimal
350 u A	120/min.

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Behavioral (Instrumental)

1. 15 minute sessions, 2 x a day, 50 second trials, 10 second ITI (5/10/76) clicks for TNT, no punishment; yellow light = ITI 17 sessions.

2. 5/28/76 - switched to continuance trials; 3 second R_f delay, 6 second chance to respond; Response=20 second trial, No respons = end of trial, into ITI. 36 sessions.

Learned, behaviorally, p < .001, combining 4 consecutive 15 minute sessions; Recorded, brain conditioned. (see below)

TNT vs. Asphalt

6/24/76 3 days, 4 c

3 days, 4 consecutive sessions.

 Re
 119
 141
 260

 NRe
 13
 1
 14

 132
 142
 274

 $x^2 = 11.79$ p < .001

Continuance trials
20 second trial if responded;

10 second ITI

Total No. of Sessions . 53

S. 021

Status. Brain conditioned p < . 005 (correlation)

EBS Rate and Parameters. 30/min. 450 \(\mu \) A x 250 msec.

Intensity-Rate Curve.

375 \(\mu \) A used in conditioning.

350 μ A 14/min. 400 μ A 26/min. 30/min. 475 μ A 25/min.

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Standard Classical 20 second trial, 10 sec. ITI, 30 minute sessions, 1 session/day = 60 trials/day. Post recorded after 5 and 16 sessions, brain conditioned after 16 sessions.

Total No. of Sessions. 16

PEPCENT TIME IN RAND

BAND	PRF-NE	PRF-F	POST-NE	POST-E
1	0	9	n	5
ē		7	r	3
ъ 3	?	8	3	6
4	7	7	9	4 .
5	9	4	A	11
6	4	7	7	3
7	13	13	A	J U
A	17	9	1 4	7
g.	6	7	G	ነኝ
10	~	,>	7	4
î i	` 3	٦	ς.	1
12	2. A 2. A 2. A	,	4	3
13	2.6	1.8	₹.9	1.3
14	2	2.4	• 6	1.2
15	₽•₽	2.5	3.7	1 0 6
16	1.5	1.3	3.7	i.5
i 7	• 0	1 . 4	• 0	1.4
j e	1.4	1.4	• 4	.4
ļό	٥	1.3	• B	•4
Su	1.6	1.4	1.6	•7
21	1.9	1.4	1.3	1.3
22	1.7	2.1	• a	1.7
23	2.2	۲.۶	2.3	2.2
24	1.8	2.3	2	1.2
25	1.4	1.7	2.5	1.4
24	. 1	1.5	1.9	1 + 4

		COND	τ
PHF-NF	VS PRF-F	1	.795265
COPP=	.77534	5	1.24893
PPF-NF	VS PUST-NE	3	2.64568
COPH=	.8904HZ	4	3.2A732
PHF -NF	VS POST-F	5	431279
COPP=	-64657B	4	4112473
PRF-F V		7	1.9233
CORP=	.646624	R	.2726725-03
PRF-F V		Ų	.420025
	694754		
POST-NE	VS' F(197-F		
	.01033		

	PRF-NF	PRE-E	POST-NF	P05T-6
BAND		2	21	н
j	S	څ	7	7
3	<u> </u>	4.	10	10
3	<i>'</i>	4 .	12	7
4	4	=	ż	5
4 5	6	5 3	2	5 3 3
	3		R	3
6 7	10	12		
•	ن	y	5	H
6	7	7	6	5
•	ż	પ	2	3
10	3	3	1	5 3 3 3
11		3	1	3
12	3 1	3.1	1.6	1.6
13	3.1	2.3	• "	• 9
14	3.6	5.8	1.6	1.8
15	7.9	1.5	. 2	ج.
16	1.5	1.2	.2	• 3
77	1.2	1 • 6	1.3	. A
18	1.7	, ,	1 - 4	1.9
19	1.7	2.5	2	. 7
Sι	7.7	1.7	• •	. 9
21	4.5	2.3	1.5	1.2
22	2.4	1.7	' • '	1.6
23	· > . 7	1.9	1.2	-6
24	1.4	2.4	. 9	1.7
25	1.9	1.5	• *	1
24	?	1.9	•	•

	Corn	•
PPF-NF VS CRF-F	1	4.52981
Per wine	>	2.45435
CURR= .839969	a	-1.91291
Lett Aut A	4	-2.05005
CORR= .306811	, 5 ,	071139
PRE-NE VS POST-H	Ġ.	-3.73971
CORP= .539427 PRE-E V5 POST-ME	7	197358
	я	-1.23459
COPH= .234262 PHF=F VS POST=F	C y	.573542
CORR= .358548		
POST-ME VS FINCT-F		
CURD T02470		

5 022

Status.	Brain	conditioned,	p <	. 025	(correlation)
---------	-------	--------------	-----	-------	---------------

EBS Rate and Parameters. 131/min. 225 μ A x 250 msec.

Intensity-Rate Curve.

100 д А	62/min.		
125 µ A	74/min.		
150 д А	95/min>	used for	conditioning
175 д А	110/min.		
200 HA	128/min.		
225 H A	131/min. 🛶	optimal	

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Standard Classical 20 second trials, 10 second ITI, 30 min. session, once a day = 60 trials/day. Recorded after session 5, brain conditioned.

Total	No.	of	Sessions.	5

<u>5</u> <u>023</u>

Status. Brain conditioned p < .005)correlation)

EBS Rate and Parameters. 142/min. 275 μ A x 250 msec.

Intensity-Rate Curve.

150 µ A	5/min.
175 µ A	38.1/min.
200 д А	88.6/min used for conditioning
225 µ A	113.7/min.
250 H A	134/min.
275 µ A	141.5/min optimal
300 µ A	130/min.

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Standard Classical - 20 second trials, 10 second ITI, 30 minute session/day = 60 trials/day. Recorded after session 4, brain conditioned.

Total No. of Sessions. 4

David.	PRE-NF	PRE-E	POST-NE	FOST-F
BAND	_	H	n	Ç
i i	0	5	3	()
2 3	1	, s	7	6
3	3 3	6	7	0
4 5 6 7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	H
5	5	3	7	3
6	4	9	7	H
	15		11	2
8	13	h	A .	e
9	īr		4	4
10	5	•	í	7
11	4	,	7	
12	2	, a	3.3	7.2
13	3.1	1.3	3.5	۹,۱
14	5.4	2.1	3.2	3.2
15	4.1	2.h	√	2.4
16	1.3	1.2	2.8	2.9
17	7	5.1		2.6
<u></u> ነ ይ	1.1	1.1	1.7	1.2
19	1.3	1	1.6	2.5
Şu	1.1	1.1	3.3	2.3
21	2.2	2. 3	1	1.8
<u>5</u> 2	2.6	• 9	2.1	2.2
23	7.0	• "5	1.9	
74	2.2	1.9	1.7	3.6
25	2.4	1.4	1.4	3.1
26	2.4 2.0	1.4	1.2	2.5

	COND T
PPE-NF VS 17PF-F CORP= .486969 PRE-NF VS POST-NF CORP= .739559 PRE-NF VS POST-F COPH= .505045 PPE-F VS POST-NF CORR= .364279 PRE-F VS POST-F CORR= .345435 POST-NF VS POST-F COPH= .133614	1 .768019 2053639F-01 3 4.76484 4 1.60017 5 .778528F-01 6 1.03819 7 1.49826 8591077 9 1.34852

FAND	PRF-NF	PRE-F	DOCT-NE	POST-F
)	36	36	34	21
3 3	? ?	55	17	14
3	19	23	17	۾ڄ
4	16	11	16	4
5	9	14	า้า	15
4 5 6 7	5	7	Á	3
7	14	9	14	12
Ą	24	23) P	<u>\$0</u>
9	83	18	1 A	16
10	11	14	16	6
11	Ř	3	Á	Ä
12	9	10	11	11
13	6.4	7	14.5	10.5
14	5. ^a	9.7	A.K	Ř. Ť
15	4.6	6	າູ້ພ	7.4
16	1.8	2.1	• 7	1.5
17	2.4	3.1	ຸດ	5.5
18	1.6	4	1.1	1.3
10	1.4	2.4	7	4
Su	4.4	5.4	4	5.4
21	4.6	5.5	4 . P	5
22	4.6	4.1	4.4	3.3
23	4.3	6.4	4,3	6.2
24	5.1	2.2	6,2	4.3
25	Š.1	5.1	5 4	5.2
56	4.3	4.4	4.3	4.2

STATISTICAL DATA

	CUM	ſ
PRE-NE VS HOF-E	1	2.51690
CÚBr= "444H45	2	4.02427
PRF-NE VE FOST-IF	3	7.62795
CORP= "038114	4	3.0002k
PHF-MF VS MOST-F	ь,	1.6217
Cush= "bulkia	6	3.54719
PHF-F VS POST-11	7	1.526
COPP = .925175	Ą	1.76564
PPF-F VS POST-F	Q	2.61019
COPP= .854682		
POST-NE VE POST-F		
. COPP= .774359		

Status. Brain conditioned,	p < .01 (correlation)
EBS Rate and Parameters,	60/min, 225 µ A x 250 msec.
Intensity-Rate Curve.	
	150 µ A 15/min.
	175 u A21/min.
	200 # A40/min used for conditioning
	225 µ A60/min. → optimal
	250 µ A50/min.
Odorants Employed. Pre	TNT, Asphalt - Post: TNT, Asphalt
l session/day = 60 trials/day.	ssical. 20 second trials, 10 second ITI, 30 min/session Recorded after 5 sessions - brain conditioned.
Total No. of Sessions 5	
aaliffiigadiinkaa gaaliffiina, eliinagaalkeenna väh-alleeteaalkaallispaala iluusunaa vassuurusenka vuonk	<u>s</u> <u>030</u>
Status. Brain conditioned	p < ,001 (correlation)
EBS Rate and Parameters.	138/min. 250 μ A x 250 msec.
Intensity-Rate Curve.	
	150 \(\mathcal{A} \) A36/min.
	175 μ A 93/min used for conditioning 200 μ A 128/min.
	200 µ A 128/min.
	225 µ A137/min.
	250 μ A138/min optimal
Odorants Employed. Pre:	TNT, Asphalt - Post: TNT, Asphalt
session, 1 session/day = 60 tria	ssical. 20 second trials, 10 second ITI, 30 minute ls/day. Reinforcement schedule: 100%; 50% during post recordings Recorded after 5 sessions -
Total No. of Sessions5	- ∙

	PPF-NF	PRE-F	PUCI-NE	36
BAND		42	21	14
1	42	21	51	14
2	17	14	17	, -
3	14		;» a	
1 2 3 4	74	4	4	11
•	, A	13	A	13
5		6		11
6	13	11	11	is
7	4	12) Q	•
Ř	1 v		· Q	13
	12	13	12	Jυ
9	15	10	4	· 6
10	ġ	٩		11
11		13	3	10.5
12	13	9.2	17.5	
13	11.5		4	10.7
] 4	Q • E	10.1	12.2	4.0
	R.5	11.1	4.7	3.4
15	2.4	3.9		.9 3
16	2 2	7.3	j • h	
17	2.7 3 2.8	1.3	3	ž
18	3	3.6	2.H	
19	7.A		3.3	1 • P
	2.9	3.3	s . 3	. 1.7
Su	' 4	2		4.2
21	2.7	4.7	3 7	4.6
27		4.3		3.1
23	3.5	3.1	3. j	
24	4.4		4.6	3.3
کد	3.1	2.3	3.5	7.3
	3.2	1.6	• • •	
76	- -			

STATISTICAL DATA

CUM) T

and he we post-	1	-2.14517
DOL TUE	7	01H234
CUPR= .836479	3	2.2804
PUF - NE VS FOST- III	4	-1.35A32
CUPP= .777777	Š	-4. AL794
PPF -NF VS POST-	4	637931
CORH= .872741	7	-1.9155
PPE-F VS POST-ME	Ą	-2.27063
CUBH= • EBHSUG	ų	1.54227
PPF-F VS POST-L		
Cubu= .035405		
PUST-NE VS FOST-		
6000 429021		

PEPCENT TIME IN BAND

BAND	PRF-NF	PHF-F	POCT-NF	POST-F
1	36	31	42	16
2	21	2)	7	17
3	31	ēά	27) 7
A	16	13	16	13
5	6	ý	£	4
	ä	5	3	R
6	4	Ĺ	4	7
7 8	14	15	7	9
9	Ş.u	1H	12	15
10	11	in	24	10
11	10	10	- J =	A
	11	14	jα	16
12 13	11.2	12.5	10.4	11
14	4.9	4.4	7.7	7.1
15	6.4	4.4	K . 4	4.0
			1.5	2
16	1.5			5.3
17	• 4	1.5	• 4	
) P	• 6	1.3	• 4	• 84
10	1.8	1.7	υ 2 2	э. r
20	4	l . H	2.2	2 ° c
51	2.3	3.6	1	4
>>	2.4	3.3	1.2	2.7
23	3.5	4.H	1.9	1 • •
24	2.4	,2 , (4	1.4	.7
25	2.3	2.3	2.1	3.1
74	2.A	4	1.7	3.2

		しいかり	T
PRF-NF	Ac opert	1	5.05974
CURH=	.977371	?	4.47054
PPF-NF	VS POST-16	3	1.26961
COPD=	859481	4	-43415
PRF-NF	VS F1)ST-1	5	- 244043
CORF=	. A26114	6.	093502
_	S POST-NE	7	.17349KF-01
CUBBE	. 435744	F	.107151
_	S POST-F	ų	4,511749
COPR=	, ese 1 35		
POST-NE	VS 1051-1		
• • •	,782744		

Status.	Brain	conditioned,	p <	, 001	(correlation)	ı
---------	-------	--------------	-----	-------	---------------	---

EBS Rate and Parameters. 112/min. 275 µA x 250 msec.

Intensity-Rate Curve.

150 µ A	63/min.	
175 A A	74/min.	
200 H A	94/min.	
225 uA	99/min.	used for conditioning
250 µA	110/min.	
275 μ Α	112/min.	optimal

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Standard Classical. 20 second trials, 10 sec. ITI, 30 min./
session, 1 session/day = 60 trials/day - Reinforcement schedule:100%, 50% during
session before recording. Recorded after 5 sessions. brain conditioned.

Total No	. of Sessio	n5
----------	-------------	----

S 034

Status. Brain conditioned, p < .05 (correlation)

EBS Rate and Parameters. 38/min, 400 # A x 250 msec.

Intensity-Rate Curve.

350 H A	10/min.		
375 µ A	21/min.	s used for conditioning	Λg
400 µ A	38/min.	optimal	
425 # A	35/min.		

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt. Air

Conditioning. Standard Classical. 20 second trials, 10 sec. ITI, 30 min/session 1 session/day = 60 trials/day. Reinforcement schedule 100%, 50% prior to recording. Recorded after sessions 5, 8, and 9, Brain conditioned after session 9 - when exposed to Air vs. TNT.

Total No. of Sessions. 9

BAND	PRF-NF	PRE-F	POST-NF	905 T- F
	36	36	42	16
1.	2A	17		21
2 3	23	50	7 3	20
3		13	29	24
4 5	50	19	17	.13
5	13	6	7	6.
6	3	6	11	1
7	11		10	16
B) P	15	14	22
9	18	17	12	22
10	15	16		7
ון	6	6	F P	íı
12	5,	10		11.8
13	9.9	8.6	11.2	
14	6.5	5.4	10.1	7.7
js	5.3	6.4	K.4	6.4
16	1.5	2.4	2.4	3.4
17	1.4	2.3	3.2	• 9
Î P	1.3	>. K	5.0	4.7
19	.4	1.2	1.2	• P
50	3.3	2.7	3.6	• • •
21	3	₹.7	4.4	5
	4.5	>.7	4.0	4.0
22	3.5	3.5	۲. ۱	6.2
23		4.4	5	4.5
24	2.9	4.4	£ ,4	4.2
25	4.P	2.11	3,3	ع. د
26	3.9	Z • * 1	'• /	

		COvit	τ
HDE-FVIF A	4 +4F →F	1	3.35057
	924149	2	2.2343
-	S POST-ME	3	2.11231
	748092	4	721392
•	S +05T=F	ς,	* >4490B
• • •	813981	6	2.39448
COPH= .	POST-ME	7	047065F-01
	785044	P	272419
PRF-E VS	POST-F	.	7.27743
COPP= .76]	494		
POST-NE V	15 FOST-F		
COPP= .571	A51		

BAND	F:RF-MF	PRE-F	POST-NF	PI)ST-F
1	21	36	21	47
2	10	17	14	PA
3	11	5	11	14
4	18	11	>=	4
	11	25	Ω	23
5 6 7	10	7	7	8
	14	17	1 9	14
Д	2 0	₹ 2) a	15
9	23	13	11	13
10	9	Ą	ລ	15
11	4	4	E	5
12	6 .	ς,	4	P .
13	5.9	4.6	7.9	6.6
14	7.1	4.P	Q 3	5.3
15	5.3	7.9	7.4	5.3
16	1	4.4	7.4	4.4
17	1.4	3.2	5.1	4.1
18	2.1	2.6	2.1	3.4
10	7. n	4.4	4.4	>
20	5. 1	n. c.	K. h	્
21	5.3	7	ٿ ۽	6.6
22	P.4	12	7.2	7.5
23	7	7.6	1 ^	8.1
24	.15	14.1	jr	12.7
25	7.9	7.7	4.9	7.1
26	7	4,4	6.3	7.4

	(10:11)	1
PRE-ME VS PRE-E	1	-1.85125
CORR= .738675	Š	1.79447
PRF-NF VS POST-NF	3	2.29317
CUBE= *NING"	4	1.05206
PRF-MF VS POST-F	ς.	-2.3421
CUBH= .614923	6	1.3074
PHE-E VS POST-NE	7	709667
Chab= • • • • • • • • • • • • • • • • • • •	ρ	. 385191
PHE-E VS POST-E	9	.05786A
COPP= .477056		•
POST-NE VS POST-P		
COPP= .591746		

Status. Brain conditioned p < .05 (correlation)

EBS Rate and Parameters. 90/min. 200 \(\mathre{A} \times 250 \text{ msec.} \)

Intensity-Rate Curve.

150 μ A _____83/min. → used for conditioning 175 μ A _____88/min. 200 μ A ____90/min. → optimal 225 μ A ____79/min.

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Standard Classical. 20 sec. trials, 10 sec. ITI, 30 min. sessions, l session/day = 60 trials/day. R_f schedule: 100%, 50% during session prior to recording. Recorded after sessions 5,8; Brain conditioned after 8 sessions.

Total No. of Sessions 8.

S 036

Status. Brain Conditioned p < . 05 (correlation)

EBS Rate and Parameters. 67/min. 325 µ A x 250 msec.

Intensity-Rate Curve.

250 µ A	28/min.
275 μ Α	38/min.
300 u A	38/min.
325 µ A	67/min.
350 µA	62/min.

Odorants Employed. Pre: TNT, Asphalt - Post: TNT, Asphalt

Conditioning. Standard Classical. 20 second trials, 10 sec. ITI, 30 minute session, 1 session/day = 60 trials/day. Schedule of R_f 100%; 50% during session prior to recording. Recorded after session 5; brain conditioned.

Total No. of Sessions 5.

BAND	PRE-NE	PRE-E	POST-NE	POST-E
1	26	5	31	16
3 3	14	24	24	14
3	6	14	17	31
4	24	27	19	9
5	11	10	9	ź s
6	18	7	10	, i
7	17	25	14	10
P	17	50	12	18
9	6	ζ.	in	16
10	4	10	is	10
11	5	6	9	
12	Ŗ	7	>	3 4
13	6.6	8.5	K. 6	7.2
14	5.5	11.3	11.3	7.1
15	6.4	7.4	4.9	7.4
16	3.4	2.4	3.4	3.0
17	7.P	3.2	7.4	4.1
18	1.7	3.4	5,5	2.4
ΙĠ	3.5	1.6	4.4	4.7
Su	5.P	2.5	3,3	4.4
2)	5.3	3.7	4.6	4.7
25	5.4	5.1	6	6
23	, 6°5	5.9	5 .7	7.4
24	8.6	4.4	£.7	7.0
25	7.1	7.5	6	5.2
26	4	4.4	4.4	4.0

	CUVIL	T
PHE-NE VS PRE-F	1	1.11816
COPU= .617678	2	1.54308
PRE-ME VS FINST-HE	3	1.27561
CORR= .743585	4	7,04902
PHE-ME VS POST-F	۾	1.04443
CORP= .346368	6	.799499F-n1
PRE-E VS POST-NE	7	1.74828
COPP= .57983	\$.	1.12039
PRE-E VS POST-E	9	266807
C()RP= .416055		
POST-NE VS POST-F		
LUBR= -566644		

BAND	PRE-NE	PPE-F	POST-NE	POST-F
1	26	3)	21	42
2 3	17	31	20	74
3	17	11	23	50
4	9	16	7]	24
5	11:	13	17	9
6	8	3	(1	6
7	10	10	12	17
8	14	22	15	9
9) R	16	17	3 N
1 v	16	13	12	9
"	7	A	2	2
15	9	Q	4	Ą
13	7.2	10.5	7.9	7.9
14	7.1	7.1	7.7	8.3
]5	5 •8	6.4	5.P	Q
16	2.4	1	7.4	1
17	1.4	1.H	2.3	3.2
18	• 8	2.1	1.7	2.4
) o	1.5	7	• ជ	4
∑ 0.	3.6	3.3	5 _. 4	2.9
21	7.5	2.3	2.3	4.3
22	4 . R	4.5	3.5	3.0
23	6.2	4	1.9	3.5
24	ج,	4.2	2.6	3.3
25	3.5	4.7	3.1	ž.š
24	3.2	7.6	3 5	1.6

STATISTICAL HATA

Commence of the second second

	CUVID	т
PHE-ME VS PRE-E	1	1.08412
CARR= . RRREA3	جَ	1.644(5
PHE-ME VS FORTHIE	3	014091
CORF= .844046	4	699614
POF-ME VS FORTER	5	667653
CORP= .796974	6	1,46428
PEF-F VS POST-FF	7	169326
COPPE .FAHRY7	A	P07278
PPF-F VS PUST-F	9	1.22944
CURH= .829068	•	
POST-LE VS POST-F		
CORP= .782728		

<u>s</u> 037

Status. Brain conditioned p < . (correlation)
EBS Rate and Parameters. 31/min. 425 μ A x 250 msec.
Intensity-Rate Curve.
350 μ A12/rain. \Rightarrow used for conditioning 375 μ A23/min.
400 μ A23/min.
425 \(\mu \) A31/min. optimal
450 μ A31/min.
Odorants Employed. Pre: TNT, Pine - Post: TNT, Pine, Air, Asphalt
Conditioning. Standard Classical. 20 second trials, 10 sec. ITI, 30 minute session, 1 session/day = 60 trials/day. R _f schedule - 100%, until session prior to recordings, then 50%. Post recorded after sessions 3, 5, 8, 10, after exposed to all NE odors above - Brain conditioned after 10 sessions.
Total No. of Sessions. 10.
Status. Brain conditioned p < .005 (correlation)
Biograph Brain donated by those (don't have
EBS Rate and Parameters. 50/min. 200 u A x 250 msec.
Intensity-Rate Curve.
175 µAdidn't press 'used for conditioning
200 μ A 50/min. \rightarrow optimum
225 µ A26/min.
250 µ A40/min.
Odorants Employed. Pre: TNT, Pine - Post: TNT, Asphalt, Air, Pine
Conditioning. Standard Classical. 20 second trials, 10 sec. ITI, 30 minute session, 1 session/day = 60 trials/day. R_f schedule - 100% until session prior to recording, then 50%. Recorded after 3 and 5 sessions; after exposure to all NE odors listed above; brain conditioned after 5 sessions.
Total No. of Sessions 5

	·	PRE-E	POST-NE	POST-E
BAND	PRF-NF	42	26	36
1	31		21	10
?	21	10	14	55
3	17	11	27	11
4	16	50		9
Ė	11	15	4	
<u> </u>	2	8	5	6 7
2 3 4 5 6 7 8 9	6	17	6	19
6	17	19	16	
	18	14	14	23
	16	1.1	9	7
10	3	7	7	4
11	8	7	1 o	8
12		8.6	10.5	10.5
13	K.K	7.1	11.9	5.A
14	6.6	5 . A	6.4	4.P
15	4.R	1.5	5 4	5.0
16	2.4		1 . A	•5
17	7.₽	4.6	2.1	1.3
18	2•€	5.K	2.4	, A
19	1.2	1.2	4	3.6
50	4	5.4		5.7
21	7	7	6.6	6
55	5.1	H.1	7.5	8.1
23	10.A	9.7	9,4	
	14.8	7.9	A.1	4. ⁷
?4 ?5	11.8	6.2	4.4	12.7
25 26	6.0	3.3	6.5	7.0

STATISTICAL DATA

0.400

1506729 2 -1.19511 3 1.62997 410017 5275587 6213235 7 .415309 4 -1.12336

Reproduced from best available copy.

BAND	PRF-NF	PHE-F	POST-NE	POST-F
1	36	31	31	47
3 2	14	10	21	21
3	14	6	26	A
4	Su	13	24	۱۱ح
5	13	17	А	19
6 7	1 0	14	6	<u>}</u> 1
	1 n	10	11	عج
8	22	14	23	11
4	? l	20	28	11
10	5) n	B	11
11	6	6	; >	4
12	4	15	7	1
13	7.9	10.5	K.K	7.2
14	6	4 . R	7.7	6.5
15	7.4	4.4	6. 4	Ÿ
16	4.9	2.4	3.9	5.4
17	3.7	3.3	2.3	f ∙
JΑ	1.3	4.7	2.1	6.6
10	2. ^R	1.2	2.4	2.4
Su	4	5.1	₽•9	3.3
71	6.3	3.3	3.3	2.0
22	4.8	4.5	4,5	ۥ0
23	6.5	5.7	W	5.7
74	3.3	5	4.5	7.2
25	2.3	5.4	ካ. ዖ	3.5
24	3.2	4.4	4.	٦

STATISTICAL MATA

		C(1+1)	T
Pitt =vit	VS CRE-F	1	.441444
CUpp=	.ro21144	2	1451524
PHE-VIE	VS POST-ME)	4.54005
COPP=	904375	4	1.51575
PHF-NF	\$ POST-F	e;	-1.11996
CUBH=	249+5	4 ,	.40026]
PPF-F VS		7	1.22921
CORR=	• 110648	j u	961914
PPF-F VS		0	1,62769
CORR= .	81223°		
POST-NF	VS POST-F		
• • •	675759		

Copy available to DTIC does not permit fully legible reproduction

5 040
Status. Brain conditioned. p < . 001 (correlation)
EBS Rate and Parameters. 78/min. 175 μ A x 250 msec.
Intensity-Rate Curve.
125 µ A42/min.
150 # A71/min. sused for conditioning
150 # A71/min. ⇒ used for conditioning 175 # A78 min. ⇒ optimal 200 # A73/min.
200 μA73/min.
Odorants Employed. Pre: TNT, Pine - Post: TNT, Pine, Air, Asphalt
Conditioning. Standard Classical. 20 sec. trial, 10 sec. ITI, 30 minute/session, 1 session/day = 60 trials/day. R _f schedule: 100% until session before recording, then 50%. Recorded post sessions 3, 5, 8, and 10, after exposure to all of above NE odors; Brain conditioned after 10 sessions.
Manalata at Caratana 10
Total No. of Sessions 10.
<u>s</u> 041
Status. Brain conditioned p < .01 (correlation)
EBS Rate and Parameters. 42/min., 400 \mu A x 250 msec.
Intensity-Rate Curve.
300 μ A1.6/min.
325 μ A14/min. we used for conditioning
350 μ A $\frac{11}{\text{min}}$.
375 μ A29/min. 400 μ A42/min. optimum
$400 \mu A = 42/min.$ optimum
425 u A34/min.
Odorants Employed. Pre: TNT, Air - Post: TNT, Pine, Asphalt, Air

Conditioning. Standard Classical. 20 sec. trial, 10 sec. ITI, 30 minute session, 1 session/day = 60 trials/day. Recorded post session 3, brain conditioned. R_f schedule=100%, 50% during session prior to postrecordings.

Total No. of Sessions 3.

PENCENT TIME THE HAND

BAND	PRF-NE	PYF -F	POST-NF	POST-F
	24	47	74	47
) 2	21	21	10	14
2 3	A	14	ب	الإنز
4	25	13	25	ب
e,	23	t.	11	4
6	A	h	4	3
7	11	1	11	11
Ŕ	14	15	a f	17
Ġ	14	16	1.3	4
10	ìn	1 F	1 n	16
11	6	ů.	4	4
ĺŹ	Ä	13	F	11
ià	7.9	4.5	<u>د</u> 🔓 سر	د • د
) 4	10.1	7.7	5.4	H•O
15	5. º	4.8	e , 3	17.7
16	4.4	ລູ້ດ	2,4	2.0
17	4.6	7.7	7.7	1.4
18	3.0	2.1	6.7	• "
٥١	ຮັ້ຊ	2.4	1.2	• H
Şu	4.7	5.1	6.2	4
21	7.6	2.6	6.6	5• 3
55	4.0	1,4	P.1	6
23	5.4	a <mark>ั</mark> ผ	9.7	н. 9
24	7.4	6.7	10.4	9.7
25	6.2	3.7	P.3	9.2
26	3.7	5.1	5.6	4.4

STATISTICAL MATA

		(Ot to	η
PPF=MF	Ac tak-t	1	-1.53745
CObn=	.731428	5	2.44463
PDE-VIE	VS POST-AF	า	1. ሳዶልበር
Cubb=	.793014	4	2.44754
PIDE-NE	VS P()ST++	ε,	-1.5131
Cupo=	.54633]	4 .	.751008
PFF-F	VS POST-NE	7	670265
Cutb=		į p	1.12705
PIZF-F		. 😛	. 737681
Cook=	. H5642		
POST-N			
COppe	.691664		

Copy available to DTIC does not permit fully legible reproduction

PERCENT TIME IN BAND

BAND	PRF-NF	PRF -F	POST-NE	PUST-H
•	36	.31	74	31
3 5 1	17	21	21	17
3	A	.28	20	
4	25	13	7 0	20
5	6	13	9	6
6	2	>	д	14
7	17	h	17	μ,
B	1^	19	23	25
9	15	15	14	10
) n	1 &	13	7	14
11	6	••	4	*
ìź	4	} 4	Q	7
13	11.2	7.2	4.2	14.5
14	A . 9	н.З	10.1	6
15	7.9	K.4	Q	e′ • & _ ′
16	i	1.4	7	4.4
17	2.8	1.8	4.1	2.8
18	2.6	1.7	1.3	4.4
19	2.4	1.6	ح. ١	1.4
ŞΛ	ក ្នុំខ	4.4	5.4	4.7
21	4.6	5	7.6	4
25	6.6	4.7	7.4	9.6
23	10.5	11.1	10.2	H.1
24	H. 1	12.7	11	10
25	10.6	11.2	10.6	11.8
26	6. 5	7.4	≈ • ≪	7

STATISTICAL DATA

	CON1) T
PRE-ME VS BUELL	1 . 6 Mar 284
CORH= .743742	2 -1.47874
PHE-MI VS POST-11	7 7774576 -01
C(180= .6405) 3	4 544261
PPF-MF VS POST-F	g 2,73252
COPP= .867304	4. 427034
PHI-F VS POST-ME	7 1.13892
CCRF= -848141	9 .1]4869F=01
PRE-E VS POST-F	५ = वातवा
COPH= .709927	
POST-NE VS POST-F	
CAND - 04 54 7E	

Copy available to DTIC does not germit fully legible reproduction

Discussion

It is clear that rats can detect the odor of TNT. The questions of merit really concern the most efficient techniques to produce a trained TNT detector. We started with the concept that it might be best first to train the rat to bar-press for EBS when TNT was present to have an index that he was indeed aware of the presence of TNT. We felt that once the rat pressed the bar significantly more when TNT was present than for the control odorants, we could be sure of his conditioning and then proceed to recording his CFS.

We achieved such self-stimulation in several rats, and went on to record their CFS. We soon learned that the fact that a rat demonstrated conditioning did not necessarily mean that he would show corresponding changes in his CFS, although some did. Conversely, we also discovered that we could find significant changes in CFS after classical conditioning (viz., stimulating the rat with EBS only when TNT was present) which change could not necessarily predict how well the rat would bar press for EBS when TNT was present.

We, therefore, resolved, fairly soon, that we would not use operant conditioning as an indicator of training, but use classical conditioning exclusively, and record after reasonable periods of training. This procedure worked well. However, the question of when to record was not answered in this study, and must await a new study in which we propose to record after each session of training.

Another question which had to be resolved is which criteria to use in considering a rat capable of distinguishing TNT from controls. In the case of operant conditioning, it was clear: the rat had to avoid pressing the bar when the controls were present and press everytime TNT was present. However, there were problems in deciding when the CFS to TNT was different.

We employed various statistical procedures. The Wilcoxon and Friedman Tests, essentially measured whether there was more cortical activity during TNT than control odorant delivery. This procedure yielded a few cases which confirmed the hypothesis.

However, we ultimately found a more subtle technique. We reasoned that the training should produce a modification of the CFS, when TNT was "learned" to be important, but that the CFS would not change during "unimportant" stimuli. We, therefore, employed Pearson Product Moment Correlations between the CFS obtained prior to and following exposure (and training) to the odorants.

This system of analysis enabled us to evaluate even subtle modifications of the CFS produced by the training.

In order to ascertain whether the changes in CFS shown after training were specific to each rat, or represented a change common to all, we computed an analysis of variance for the following variables: Subject, Pre versus Post, Explosive versus Nonexplosive, Bands of EEG activity, and their interactions (See Appendix for Summary Table). There were numerous significant variables and interactions: Subjects, Explosive versus Nonexplosive, etc. However, the triple interaction (Pre-Post x Exp-N Exp x EEG Bands) was not significant, indicating that the changes in CFS after training were not common to all rats. This finding, however, is not surprising in view of the fact that the rats were not subjected to the same training procedures. We might expect that the next study, in which training procedures are to be more standardized, might show more common changes in the CFS.

Conclusions

Rats can distinguish TNT from control odorants if EBS is delivered during TNT exposure alone. The procedures enabling us to detect when the rat is capable of the discrimination are based upon recording CFS during TNT and control odorant stimulation in the naive rat, and then recording these spectra following conditioning. There is a change in the CFS following conditioning which is detectable by computing correlation coefficients and assessing the statistical significance of this change following training.

This procedure may prove to be an efficient way to detect TNT (or other explosives) in various field situations. We recommend further exploration of the role of various cortical sites in learning the discrimination, and exploration of computer-based means of training and assessing the optimal time and degree of training.

Recommendations

Since it is abundantly clear that rats can detect the odor of TNT, the major questions to be answered are: 1. can we enhance training, 2. are there better sites from which to record the CFS, 3. what methods should be employed to determine when the rat has been conditioned, 4. how can we maintain a high level of discrimination ability in the rat, 5. how long does the training last without reinforcement?

These questions form the basis for our recommendations, which are that we should implement a study to investigate these questions.

Surgical Procedure

Male Sprague Dawley rats (250-600 gms) were anesthetized I. P. with Chloropent (chloral hydrate and sodium pentobarbitol), with the following dosages.

wt. in	grams	 	CC	Chloropent

250	 . 75
275	 . 81
300	. 88
325	. 94
350	1.00
375	1.06
400	1.13
425	1. 21
450	1. 29
475	1.37
500	1. 45
525	1.53
550	1. 61
575	1.63
600	1.77

Supplementary injections (15% of the original dose) were administered as needed. The ears were clipped for identification, and the head was shaved. Mineral oil was applied to the eyes to keep them moist, and tincture merthiclate was applied to the shaved scalp as an antiseptic.

The rat was then placed in a Kopf #900 Small Animal Stereotaxic Instrument as follows: Each ear bar was placed firmly into each auditory meatus, the teeth were placed over the incisor bar, and the nose clamp was tightened. The ear bars were then centered and tightened, so that the rat's head was level and rigid.

An incision was then made, just lateral to the midline from just behind the eyes to the back of the head (approx. 3/4 in.). The skin was retracted and moistened, exposing the fascia-covered skull. The fascia was then scraped away with a blunt instrument, exposing the landmarks: bregma (anterior) and lambda 'posterior). Bregma (B) is the intersection of the frontal and parietal skull plates at the midline. The coordinates for these landmarks were then obtained, and then used for obtaining the coordinates for the stimulating electrode, to be placed in the MFB (medial forebrain bundle). The anterior-posterior (A-P) midpoint is defined as (B+L)/2 and the lateral measurement is the intersection at B or L. The coordinates for the MFB were then defined as follows:

A-P midpoint + 1 mm, lateral distance ± 1.5 mm, depth= -8.7 mm from skull surface.

The hole for the stimulating electrode was then drilled with a small machine drill with a burr attachment. The holes for the two cortical screws were drilled with a No. 56 machine drill, as far left-anterior and right-posterior as possible (see diagram). A cortical screw (080 stainless steel) was then placed in each hole, and a lead from a bipolar stainless steel electrode, stripped of its insulation, was would tightly around each screw. The electrode was positioned lateral and posterior to the stimulating site, to allow room for the stimulating electrode (see diagram).

The dura was then sliced with a fine (30g) hypodermic needle. The stimulating electrode (stainless steel, bipolar, insulated to the tip, approx. 1 cm. in length) was then lowered to the proper depth. Dental acrylic was then applied, making sure the skull was dry. The acrylic was applied so that it covered the entire exposed surface of the skull, as well as the cortical screws, the recording leads, and 1/2 to 3/4 of the electrode base. The acrylic was allowed to dry hard, and the electrode holder was removed. Two or three stitches (OO surgical silk) were used to close the wound as needed, and antibiotic ointment (Bacitracin or Mycitracin) was applied liberally to the wound to minimize the possibility of infection. The rat was removed from the stereotaxic frame, and allowed to recover 5-7 days before shaping was begun.

Shaping Procedure

Shaping was begun 5-7 days postoperatively if the subject seemed healthy. Stimuli were delivered by a Nuclear Chicago Model 7150 Constant-Current Stimulator, or by a 60 Hz sine wave stimulator. The Nuclear Chicago delivered a square-wave stimulus, with the following parameters: .2 msec, "+" going, .2 msec off, .2 msec "-" going, equally spaced at 100 presentations per second. The amplitude, or intensity, of the stimulus is the height of the "+" (or "-") going wave (see illustration).

The stimulus was delivered at a specific amplitude (y), and duration. Amplitudes ranged from 50μ A to 600μ A, and duration was usually 250 msec, with the exception of two subjects; one was 200 msec, the other, 500 msec. The sine wave stimulator delivered a constant current (no delay) 60 Hz sine wave stimulus, ranging from 50 mV to 400 mV, and was used only in shaping.

Starting at 50 \$\mu\$ A \$\times\$ 250 msec, a stimulus was delivered to the rat when it approached the bar. Current was raised as necessary (if \$\S\$ was disregarding the stimulation) until an orienting response was elecited while \$\S\$ was engaged in grooming. Then the subject was reinforced for approaching the bar, for sniffing the bar, for touching the bar, and finally for pressing the bar. This procedure, which requires some skill, took from 5 minutes to several sessions of 30 minutes. The animal soon developed a steady routine or a method that allowed him to get the greatest number of stimulations within a period of time. Shaping was terminated when the \$S\$ pressed at least 10 times/min, for 5 consecutive minutes, for 2 days; then prerecordings were taken, prior to conditioning.

Recording Procedure

Prerecordings. EEGs were taken from each rat prior to conditioning. The S was placed in the testing chamber with no bar, and allowed to become accustomed to the air coming out of the tubes (3-5 minutes). He then was exposed to TNT for 10-20 seconds and EEGs were taken, then the nonexplosive odor for 10-20 seconds, and EEGs were taken. The order of presentation of the odors was random for each rat. EEGs were taken by a stainless steel bipolar electrode attached to two cortical screws on the rat's head 'described earlier). The signal was amplified by a Grass Model 7P3A A.C. Pre amp, and Grass Model 7DAB D.C. Driver Amplifier, and filtered at .3-75 Hz. The EEGs were recorded on either an AMPEX SP300, or a Honeywell 7600, at 1-7/8 i.p.s. with a voice mark and a 3 volt trigger.

Postrecordings. Techniques varied according to the conditioning procedure used. In general, the EEGs were recorded, in the manner described above, at the end of a conditioning session, during which the animal had received stimulation while smelling TNT. Recordings are done without the brain stimulation, during the last few trials of the chosen session. Instrumentation and techniques were identical to those described for prerecording.

Conditioning Procedure

Several changes in procedure and technique were made in conditioning. Behavioral Conditioning was tried first, before we changed only to classical conditioning. These changes in procedure are outlined chronologically below, beginning with behavioral conditioning, and ending with classical.

- 1. Behavioral Conditioning Overview. The S was placed in a testing chamber containing bar. S was exposed to TNT odor for the entire duration of the TNT trial, and nonexplosive odor for the entire duration of the nonexplosive trial. These trials were separated by a 10 second intertrial interval (ITI). A circuit was set up such that S could receive brain stimulation only when pressing the bar during the TNT trial. An exhaust fan, which was continuously on, evacuated the test chamber of air during the ITI. A timer controlled the session length, and separate timers controlled the trial and ITI lengths. Data (responses, number of trials, etc.) were recorded on both counters and cumulative recorder chart paper.
 - 2. The air delivery system underwent a number of changes as follows:
- a. Initially, one positive pressure air delivery system was used to present the S with TNT or nonexplosive odorants which were contained in closed-end copper tubes perforated to allow passage of air. The experimenter manually switched the tubes during the intertrial interval, placing them underneath the test chamber.

b. This procedure was replaced by a dual positive pressure (dual-push) system, with one tube for each odorant. The odorants were now switched automatically by a logic circuit and probability generator, which presented the odors randomly.

c. A vacuum system was then set up such that the tubes became double-ended, with air entering through one end and a vacuum pulling on the other end. During an explosive trial, air would blow on the TNT and the vacuum would pull on the nonexplosive tube, and vice-versa during the nonexplosive trial. During the ITI, vacuums would pull on both tubes, eliminating both TNT and nonTNT odorants simultaneously.

d. The final system used was a dual push-puil system, in which both vacuum and air tubes were attached at one end of the odor tube, and the other end was open leading to a small opening in the test chamber at nose level. The logic and probability generator were the same as before. In all air systems, pressures of l psi or less were used.

For each session the air and vacuum tubes were switched so that the clicking of the solenoid valves could not enable prediction of the odor to be presented next.

3. Actual Conditioning

- a. Initial. Trials were presented by hand as described above. They were 1 minute trials, 100 trials/session, 1 session/day. 10 Hz clicks over a small speaker in the test chamber signalled the presence of TNT and thus the availability of EBS. White noise over the same speaker was used as punishment when S pressed the bar during a nonTNT trial. Only 1 rat was used in this system (S 000), and he was behaviorally conditioned.
- The system became automated with the logic and timers mentioned earlier; solenoid valves for the air, and a probability generator to change the odors randomly. The air system used was the dual push-pull system. Ss were split into 5 groups, with varying trial times, punishment, and visual and auditory cues (see Table 1). Punishment took the form of white noise over the speaker with a bar press during a nonTNT trial, or a yellow light flash with the incorrect bar press. 'The light was a small 28V, 2.8 watt pilot light attached to the top of the testing chamber). It was later determined that the hiss (white noise) was the more effective punishment. The Rf (Reinforcement) schedule approximated FR(2); that is, the rat was reinforced approximately for every other press. A light (previously described) was used to indicate an intertrial interval. It later proved unsuccessful because the rats cued to its offset rather than to the odorants themselves. The light was also used as a signal of the end of an explosive trial, flashing bright yellow as the trial ended. 10 or 1,000 Hz clicks were used to signal the presence of TNT, as before. It was found that several rats learned the clicks, but then their performance deteriorated as the clicks were faded. Hence, the clicks were later abandoned, and the simple air delivery of the odor was considered a sufficient cue. A summary of this information is contained in Table 1. The system was set up such that the rat had to learn the clicks first (pass at p < .01), the clicks were then faded, and the rat was considered conditioned if it passed (p < .01) with no auditory cues. No rats passed this procedure.
- c. 5/3/76. The groups were expanded and altered. New additions included:

 1. A 2-3 second delay in clicks, to allow odor to be presented first.
- 2. A classical group in which there was no bar, and the rats prerecorded rate was played back to him in the presence of TNT. This will be described more fully later.
- 3. A new "continuance" trial group. If the subject responded within 20 seconds he was rewarded or punished, depending on the odor, with a trial extension to 60 seconds. If he did not respond within 20 seconds, the trial ended.
- 4. Rats were given 8 days maximum to pass each stage (clicks, click fading, etc.). Those who did not pass were left dormant. This information is summarized in Table 2.
- d. 5/17/76. We decided that 60 minute sessions were too long, since rats seemed to do well in the first 30 minutes, then deteriorated during the last 30 minutes. The number of groups was reduced to 4: 3 behavioral groups and 1 classical group, arranged as follows:
- 1. Behavioral: 2 30 minute/session groups, 1 group run 2 sessions/day. 1 15 minute/session groups, 2 session/day
 - 2. Classical as previously described

e. 5/28/76.

1. A 3 second delay in reinforcement was now instituted. That is, a rat could not receive EBS during the first 3 seconds of a trial (to allow time to detect odors). Any presses in this 3 second interval were counted as ITI presses.

2. Continuance trials were now adapted to each rat, according to its optimal rate of responding, determined during the shaping process. The faster the rate of responding the shorter the time to respond, and the shorter the trial. (See Table 3). Two rats (\underline{S} 004 'Speedy,' and \underline{S} 020) learned behaviorally ($\underline{p} < .001$) on this system, which now appears to be the best system to use in behavioral conditioning.

f. Final System. A total switch was made to classical conditioning. This system as described briefly below, produced 18 rats who are considered trained to a statistically significant degree, to demonstrate differential brain activity to TNT versus

nonTNT odorants.

General Procedure

1. Shape, as described earlier.

2. Take Rate-Intensity function. Starting on the lowest parameters with which a rat will press, his press rate (per minute) over 5 minutes at increasing intensities is taken, until the rate levels off or drops. In this way, the optimal intensity is determined.

3. The rat's rate is recorded on magnetic tape over 45 min. (approximately) at

his optimal intensity, in order to obtain his optimum rate of pressing.

- 4. Conditioning is run at an intensity somewhat lower than the individual's optimum. The circuit is set up so that the rats recorded rate 'playing constantly, channeled through an audio threshold detection relay Scientific Prototype 761-G), triggers the Nuclear Chicago to stimulate the subject only during a TNT trial. The system is set up as before with the last air system described, probability generator, etc. The procedure was set up as follows:
 - a. 20 second trials, 10 second ITI, 60 trials/session, 1 session/day. 3 second delay in reinforcement.
 - b. R_f schedule: 100% until trial before post recordings, then 50%.
 - 5. Post Record EEGs last trials (TNT & NE) of session, analyze.

Analysis of Effect

1. Behavioral

Note:

Subjects were considered behaviorally conditioned if we found statistically significant different distributions of their likelihood to bar press during explosive and nonexplosive trials. The tests used were one tail; statistical tests were employed only if the likelihood to respond during explosive stimulation was greater than that during nonexplosive stimulation. A Chi Square test was employed as shown.

	E	NE
R	Α	В
NR	С	D

where: A indicates the number of trials the S responded during an explosive trial

B indicates the number of trials responded to by barpressing during a non-explosive

trial: C indicates the number of trials the S failed to bar press during explosive

D indicates the failure to respond to nonexplosive trials a trained rat will have high proportion of trials in A & D category.

Data were recorded on either an Ampex FM recorder (SP-300 or a Honeywell FM recorded Model 7600). Data were identified by voice and by a trigger on separate channels. Once the location on the tape was located via verbal identification, tape speed was switched from 1-7/8 ips to 15 ips (1:8 time compression) and data were automatically collected. A timing circuit was triggered by the first trigger and at least 1,000 msec of compressed time was analyzed. A rectifier and Schmitt trigger unit accepted voltages of at least .1 volt and at least 8 Hz. Baseline crossings were converted into time intervals: time intervals were converted into a histogram by the CAT MNEMTRON models 400B, 600, 522A, 520) in the H. program. (H program starts a sweep upon a baseline pulse and sweeps across addresses at a constant rate of 3.2 KHz until another crossing takes place. It then deposits a count in the current address and resets; thus, a histogram of timed intervals between baseline crossings is accumulated). The histograms were digitally printed out and 26 bands of frequencies were formed by combining proper CAT addresses. (See Appendix, a data sheet, labled "26 Band EEG frequency").

The analysis system is shown in above Figure. At first the filter was set at 320 Hz, low pass, to pick up all frequencies <40 Hz. Later, to stabilize data for DC shifts we employed a filter set at (.5, 320) Hz [-3dB pts @ -24 db/octave roll off]. This procedure detects the frequency of simple wave forms, such as sine waves, well. However, we noted visually complex waves (summed sine waves of different frequencies) in the EEG and took measures to separate these frequencies. We first filtered for 1-6 Hz and 6,36 Hz; then decided upon 1-2 Hz 2-4 Hz 4-8 Hz, 8-18 Hz, and 16-38 Hz. Data collected outside the filtered for band were not recorded. Per cent time in band, was:

(a) (b)
$$C_i = \text{counts in band i}$$

100 $C_i / (F_i \sum_{j=1}^{26} (C_j / F_j))$ 50 $C_i / (F_i t)$ $E_i = \text{mid Frequency (Hz)}$ of band i

T = time of data sample

These formulas are theoretically equivalent for simple waves but formulation (b) accounts for data outside the bands we analyzed. Pre and postrecordings were always consistently analyzed according to (a) or (b).

Wilcoxon's or Friedman's statistical tests tested the hypothesis of differential occurrence frequencies across all bands. Limited band Wilcoxon's were also performed on the higher frequencies. Correlations were taken preexposure to conditioning and at various times postexposure. T tests were performed to see if conditioning had taken place. If and when this happened the S was considered conditioned to detect TNT.

April 1976

	Gp	Gp	Gp	Gp	Gp
	A	. B	C	D	E
	n=4	n=4	n=4	n=4	n=4
ITI time	10 sec.	10 sec.	10 sec.	10 sec.	10 sec.
Trial time	50 sec.	20 sec.	50 sec.	20 sec.	20 sec.
Ex	50%	50%	50%	50%	50%
NEx	Asphalt lst	Asphalt lst	Asphalt lst	Asphalt 1st	Asphalt lst
Pm	No	No	l second yellow light flash	l second yellow light flash	Hiss (white noise)
R _f Schedule	FR (2)	FR (2)	FR (2)	FR (2)	FR (2)
# Trials/ Session	60/lhr.	60/1/2 hr.	60/lhr.	60/1/2 hr.	60/1/2 hr.
Sessions/ Day	1	1	1	1	1
Days/wk	5	5	5	5	5
ITI signal	Dim yellow light	Dim yellow light	Dim yellow light	Dim yellow light	Dim yellow light
Intro. w/click = Ex	X	X	x	x	x
Signal .	Bright	Bright	Bright	Bright	Bright
End	Yellow	Yellow	Yellow	Yellow	Yellow
Ex trial	(1 sec.)	(l sec.)	(l sec.)	(lsec.)	(1 sec.)

^{*} Air-vacuum tubes were switched each day, to minimize predictability of solenoid sounds and ecific odors.

				May 3, 1	976			
	G p A	Gp B	Gp C	Gp D	Gp E	Gp F	Gp G	Gp H (classical
ITI time	10 sec	10 sec	10 sec	10 sec	10 sec	10 sec	10 sec	10 sec
Trial time	50 sec	20 sec	50 sec	20 sec	50 sec	20 or 50 sec	50 sec	20 sec
Ex	50% TNT	50% TNT	50% TNT	50% TNT	50% TNT	50% TNT	50% TNT	50% TNT
NEx	Asphalt 50%	Asphalt 50%	Asphalt 50%	Asphalt 50%	Asphalt 50%	Asphalt 50%	Asphalt 50%	Asphalt 50%
Pm	No	No	Hiss	Hiss		Hiss	Hiss	
Rf	FR(2) final stage	FR(2) final stage	FR(2) final stage	FR(2) final stage	FR(2) final stage	FR(2)	FR(2)	
No. trials session	60 1 hr	60 1/2 hr.	60 l hr	60 1/2 hr.	15 15 min.	l5 l5 min	15 15 min	60 l'2 hr
Session/ Day	1	1	l	1	2	1	ì	1
ITI signal	Dim yellow	Dim yellow	Dim yellow	Dim yellow	Dim yellow	Dim yellow	Dim yellow	
Intro w/ clicks =TNT	х	x	x	x	x	no	no	no
End Ex trial	Brt. yellow (lsec)	Brt. yellow (1 sec)						

S's Not Completed * (Died, Lost Electrical Caps, etc.)

			Type of Cond.	
<u>s</u>	SS Rate	Parameters	Level Reached	Reason for Loss
000	35/min.	300µA x 250 msec.	Behavioral, p< .01, no rec'ds	Died, brain infection
001				Lost Electrical Cap
002				Lost Electrical Cap
003	16/min.	250µA x 250 msec.	Behavioral, then class no sig.	Lost Electrical Cap Before Post Recordings
007	105/min.	325µA x 250 msec.	Behavioral, 24 days, p< .1, no rec'ds	Died, unknown cause
800	32/min.	600 _M A ж 250 msec.	None	Lost Electrical Cap
009	18/min.	250µA x 250 msec.	None	Lost Electrical Cap
010	53/min.	225μA x 250 msec.	None	Lost Electrical Cap
011				Aversive to EBS
012	122/min.	225µA x 250 msec.	Classical, 2 sessions, no sig.	Died, unknown cause
013	43/min.	350µA x 250 msec.		Lost Electrical Cap
015	116/min.	350µA x 250 msec.	Behavioral, 2 sessions no sig.	Lost Electrical Cap
018	154/min.	275μA x 250 msec.		Lost Llectrical Cap
024	47/min.	560µA x 250 msec.		Died, Disinfectant Poisoning?
025				Not Recordable, 60 Hz Noise
026	119/min.	225 ^H A x 250 msec.		Died, Disinfectant Poisoning
027		The article of the second seco		Died, Post Op.
028		و ويتناه الله الله الله الله الله الله الله ا		Died, Post Op.
031	57/min.	350µA x 250 msec.	Classical, 3 sessions, no rec'ds	Lost Electrical Cap Before Post Recordings
032				Lost Electrical Cap

^{*} Not included - S. 038 and S. 42 - Ran, but did not learn

_	•
4	v

S:	DATE REC:	CONDIT.:
STUDY I. D. :	DATE ANAL:	· REC. #:
		••

Anal. run @ 8x real time compression
400 pts. sampled in 125 mare (3.2 RHz)

26 BAND EEG FREQUENCY

Ļ									·							
	•	D <u>QQA</u>	AŢ DESS		ND MBER		UNTS	2X .	him i	2X F	UNTS	PERC	ENTA			1
•		-VXII	17535	NO	MDLK			27			 	FERC	ENIA		: (-
ŀ			·						•		 		<u> </u>	U.F.	• •	1.F
H		<u>6</u> 7		26				70.9			 	!	 	38.5		324
ŀ		8		25				60.1		<u> </u>	 	 		32.3	- , -	229
ŀ				24			 	52.3	·	<u> </u>	 	 		27.9	. . •	245
ŀ		9		23			ļ	46.3		<u></u>	 	}		24.5	• ,	21.9
l		10		22_			 	41.5			 	 	ļ	21.8	· .=	127
		n		21				37.6		!			<u> </u>	19.7		18.0
		12		20	` '			34.4		 		<u> </u>	<u> </u>	17.9		165
H		13		19				31. 6		 	 	<u> </u>	 	11.4	- ,	15.2
		14		18		<u> </u>	<u> </u>	29.4]	ļ	ļ	ļ	15.2	4	14.2
I		15		17			<u> </u>	27.2			 	ļ	<u> </u>	14. 1		132
		16		16_		<u> </u>		25.6		<u> </u>	<u> </u>	<u> </u>	<u> </u>	13.2	L	12.4
		17-18	<u> </u>	15	<u> </u>		ļ	23.6		1	<u> </u>	1	ļ	12.4		11.1
		19-20		14_			<u> </u>	21.0			<u> </u>	<u> </u>	<u> </u>	11.0		100
		21-27		13	<u> </u>		ļ	120		<u> </u>	<u> </u>	.]	<u> </u>	9,9		9.1
		23-2		12			<u> </u>	16.7		1	<u> </u>	1	<u> </u>	9.0		83
•		25-2	\$	11			<u> </u>	15.7			<u> </u>		<u> : .</u>	8.3	ļ	8.0
1		27-2	<u> </u>	10	<u> </u>	<u> </u>	<u> </u>	14.4						27		6.9
I		30-3	<u>.</u>	9				12.8				1		6.9		6.6
	,	34-40		8				11. 0			1	1		6.5		15.0
ا.		41-50		7				9.0				1		5.1.	[_	4.7
		51-56		6				7.6						4.0	Ι.	3.6
		57-66		5				6.6				{		3.6	<u>. </u>	31
		67-80		4		1		5.6						3.1		3133
.		31-100		3				4.4						2.4		120
		101-13		2	1	1		3.6						2.0	Γ	11.5
		35-2		1	T	1		2.4						1.5		110
				1			1	1								T
		#11	==1	boer	kut e	ff fr	ENEM	in	1/2.	1	1					
		1	F=	duer	tut a	A fre	KRAK	inh	b .						1	T

Summary Information

Total Subjects: 43
Self Stimulation
Total Self Stimulators: 36
Intensity Range: 175 µ A ~ 600 µ A, mean: 310.4 µ A
Duration: 250 msec; 1 rat 500 msec, 1 rat 200 msec.
Rate of S.S.: From 16 presses/min. to 190 presses/min., mean: 76.6/min.
Behavioral Conditioning
Total Subjects: 12 - includes rats later switched to classical conditioning
Total Significant: 1 - by behavioral indices only 1 - by neurophysiological indices only 2 - by both behavioral and neurophysiological indices
Classical Conditioning
Total Subjects: 23-includes rats which were originally behaviorally conditioned
Total Significant: 18
Number of Sessions Needed to Condition: Ranged from 3-16 sessions with a mean of 7.5 sessions.
Total Conditioned: (Neurophysiological) 21 Total Died on Lost Can

APPENDIX

Summary of ANOVA for Relative Cortical Activity within EachFrequency Band as a Function of Stimulation (E vs NE) and Condition (Pre vs Post)

SOURCE	DF	<u>ss</u>	MS	<u>F</u>	و
Subjects	20	16155.9	807.794	17.25	. 001
A(Pre-Post)	1	23.6	23.562	1.83	
B(NE-E)	1	9.2	9. 25	. 40	
C(Bands)	25	54318.3	2172.73	46.39	. 0001
AXB	1	2.3	2.37	. 05	
AXC	25	253.4	10.14	. 77	
В¥С	25	578.1	23.12	1. 79	. 02
AXS	20	148.1	7. 4 1	. 54	
BXS	20	121.6	6.08	. 44	
CXS	500	23414.5	46.83	3.64	. 002
AXBXC	25	201.6	8.07	. 82	
AXBXS	20	153.3	7.67	. 78	
AXCXS	500	6439.2	12.88	1. 32	.02
BXCXS	500	6826.5	13.65	1, 40	. 01
AXBXCXS	500	4893.4	9.79		
TOTAL	2183	113539.0			

Glossary of Abbreviations

EEG =	Electroencephalography
CFS	Cortical Frequency Spectra
EBS	Electrical Brain Stimulation
MFB	Medial Forebrain Bundle
Pre-E; Pre NE	Prior to Explosive or Nonexplosive exposure
Post-E; Post NE	Following Exposure to Explosive or Nonexplosive
r =	Pearson Product Moment Correlation
t-test =	Student's test for differences
Ex, NEx =	Explosive, nonexplosive
x ² =	Chi Square test
S =	Subject (given with identification number)
R (or Re)	Response (to bar press)
NR (or NoRe) =	No response (to bar press)
ANOVA =	Analysis of Variance

APPENDIX

Percentage Time in Each Band Recorded During Pre- and Post- Explosive and Non-Explosive Conditions

Explosive Conditions								
PRE-NE	PRE-E	FOST-NE	FOST-E					
23.4762	23.0476	22.0476	24.2381					
14	15.4762	12.9524	11.7143					
12.8571	14.6667	13.1429	14.2391					
14.9048	12.3333	16	10.6667					
9.42857	11.619	B.29571	10.3333					
6.61905	5.14286	5	6+14286					
11.5238	12.0952	11.3333	11.2857					
15.8095	14.9524	15.5714	12,9048					
13.5238	11.9524	11.8095	12.0952					
9	9.28571	8.71428	9.14286					
5.28521	5 .619 05	4.57143	4,23809					
6.476 19	7,52143	6.61905	A . 90476					
6.21904	6.67619	7.15238	7,57518					
6.0619	0.82856	6.37142	6-55237					
5.23809	5,47818	5.23809	6.07140					
2.3619	2.39047	2.47619	2.61428					
2.29999	2.39237	2.35714	2.54761					
1.89523	2.42142	0.07619	2.30952					
2.09047	2.4619	2.13333	2.05714					
3784285	3.34261	3.599 9 9	3.78095					
3.99047	3.77142	4.17619	4.35337					
4,45237	4.7	4、95714	9.7612					
5. 18 095	4.97618	5,88095	5.50952					
5 - 66666	5.15238	5.70952	5.56666					
4.82856	4.5238	5.11428	5.14285					
3,75238	3.68571	3.61428	3,74761					
	23.4762 14 12.8571 14.9048 9.42857 6.61905 11.5238 15.8095 13.5238 9 5.28571 6.47619 6.21904 6.0619 5.23809 2.29999 1.89528 2.09047 3.84285 3.99047 4.45237 5.18095 5.66666 4.82856	PRE-NE PRE-E 23.4762 23.0476 14 15.4762 12.8571 14.6667 14.9048 12.3333 9.42857 11.619 6.61905 5.14286 11.5238 12.0952 15.8095 14.9524 9 9.28571 5.28571 5.61905 6.47619 7.57143 6.21904 6.67619 6.0619 5.82856 5.28809 5.47618 2.39047 2.39047 2.29999 2.35237 1.89523 2.47142 2.05047 3.34261 3.99047 3.77142 4.45237 4.7 5.18095 4.97618 5.66666 5.15238 4.82856 4.5238	PRE-NE PRE-E FOST-NE 23.4762 23.0476 22.0476 14 15.4762 12.9524 12.8571 14.6667 13.1429 14.9048 12.3333 16 9.42857 11.619 8.28571 6.61905 5.14286 5 11.5238 12.0952 11.3333 15.8095 14.9524 15.5714 13.5238 11.9524 11.8095 9 9.28571 8.71428 5.28521 5.61905 4.57143 6.47619 7.57143 6.61905 6.21904 6.67619 7.15238 6.0619 5.47648 5.73869 7.2619 2.39047 2.47619 2.29999 2.35237 2.35714 1.89523 2.47142 2.07619 2.07047 2.4619 2.13333 3.99047 3.77142 4.17619 4.45237 4.7 5.88095 5.66666 5.15238 5.70952					

Copy available to DTIC does not permit fully legible reproduction.

Table 3
Continuance Trials As a Function of Subjective Time

Let x = rate of responding

Let y = time to respond

k = number of reinforcements obtainable in y time: a measure of likelihood to respond in time y.

Given: x = 30/min., y = 20 sec. and learning;

x = .5/sec.

xy = k; let k = 10, find y.

x (per min.)	y(in sec.)	Trial Time	(Delay + 3XTime to	Respondi
30	20	63 sec		
60	10	33		
80	7.5	25.5		
90	6.7	23.1		
100	6	21, 0		
110	5.4	19. 2		
120	5	18.0		
130	4.6	16.8		
140	4.3	15.9		
150	4.0	15.0		
160	3.8	14. 4		
170	3.5	13.5		
180	3.3	12.9		
190	3.2	12.6		
200	3	12.0		
	1			